概率图模型:基于R语言 高清完整pdf版[11MB] 附源码
概率图模型结合了概率论与图论的知识,提供了一种简单的可视化概率模型的方法,在人工智能、机器学习和计算机视觉等领域有着广阔的应用前景。本书旨在帮助读者学习使用概率图模型,理解计算机如何通过贝叶斯模型和马尔科夫模型来解决现实世界的问题,同时教会读者选择合适的R语言程序包、合适的算法来准备数据并建立模型。本书适合各行业的数据科学家、机器学习爱好者和工程师等人群阅读、使用。
目录
第 1章 概率推理 1
1.1 机器学习 3
1.2 使用概率表示不确定性 4
1.2.1 信念和不确定性的概率表示 5
1.2.2 条件概率 6
1.2.3 概率计算和随机变量 7
1.2.4 联合概率分布 9
1.2.5 贝叶斯规则 10
1.3 概率图模型 18
1.3.1 概率模型 18
1.3.2 图和条件独立 19
1.3.3 分解分布 21
1.3.4 有向模型 22
1.3.5 无向模型 23
1.3.6 示例和应用 23
1.4 小结 27
第 2章 精 确推断 28
2.1 构建图模型 29
2.1.1 随机变量的类型 30
2.1.2 构建图 31
2.2 变量消解 37
2.3 和积与信念更新 39
2.4 联结树算法 43
2.5 概率图模型示例 51
2.5.1 洒水器例子 51
2.5.2 医疗专家系统 52
2.5.3 多于两层的模型 53
2.5.4 树结构 55
2.6 小结 56
第3章 学习参数 58
3.1 引言 59
3.2 通过推断学习 63
3.6 小结 80
第4章 贝叶斯建模——基础模型 82
4.1 朴素贝叶斯模型 82
4.1.1 表示 84
4.1.2 学习朴素贝叶斯模型 85
4.1.3 wan全贝叶斯的朴素贝叶斯模型 87
4.2 Beta二项式分布 90
4.2.1 先验分布 94
4.2.2 带有共轭属性的后验分布 95
4.2.3 如何选取Beta参数的值 95
4.3 高斯混合模型 97
4.3.1 定义 97
4.4 小结 104
第5章 近似推断 105
5.1 从分布中采样 106
5.2 基本采样算法 108
5.2.1 标准分布 108
5.3 拒绝性采样 111
5.3.1 R语言实现 113
5.4 重要性采样 119
5.4.1 R语言实现 121
5.5 马尔科夫链蒙特卡洛算法 127
5.5.1 主要思想 127
5.5.2 Metropolis-Hastings算法 128
5.6 概率图模型MCMC算法R语言实现 135
5.6.1 安装Stan和RStan 136
5.6.2 RStan的简单例子 136
5.7 小结 137
第6章 贝叶斯建模——线性模型 139
热门阅读推荐:
图文精选:
-
《黄天文引爆用户增长》高清PDF电子书
1本手把手教你做用户运营&用户增长的实战手册,资深用户增长专家黄天文在去...