绿色排版工具|热门专题|网站地图|移动官网|微信编辑器
您的当前位置:主页 > 电子书 > 计算机类 > 正文

GPU编程与优化:大众高性能计算 完整pdf[78MB]

来源:[db:来源] 编辑:脚本之家 时间:2019-07-29 14:43:40 阅读:

本书第一篇系统地介绍GPU编程的相关知识,帮助读者快速入门,并构建GPU知识体系;第二篇和第三篇给出大量实例,对每个实例进行循序渐进的并行和优化实践,为读者提供GPU编程和优化参考;第四篇总结影响GPU性能的关键要素(执行核心和存储体系),量化测评GPU的核心性能参数,给出CPU/GPU异构系统上覆盖完全的各种混合并行模式及其实践,帮助读者真正透彻理解GPU。

目录

第一篇理论篇
第1章高性能计算概述3
1.1高性能计算概念辨析3
1.1.1并行计算、高性能计算和超级计算3
1.1.2超级计算机与超级计算中心4
1.2计算科学5
1.3高性能计算发展史5
1.4高性能计算简介6
1.5向量机与阵列机8
1.6本章小结9
第2章GPU概述10
2.1GPU是什么10
2.2协处理器10
2.3GPU与显卡的关系11
2.4GPU/显卡购买注意事项11
2.5为什么要学GPU编程12
2.6GPU与CPU辨析13
2.7GPU发展简史14
2.8GPU编程方法14
2.9CPU/GPU异构系统16
第3章GPU硬件架构17
3.1GPU架构17
3.1.1Tesla架构18
3.1.2Fermi架构20
3.1.3Kepler架构21
3.1.4Maxwell架构23
3.1.5Pascal架构243.2Kernel的硬件映射28
3.3GPU存储体系29
3.4GPU计算能力30
GPU编程与优化——大众高性能计算目录第4章GPU软件体系33
4.1GPU软件生态系统33
4.2CUDA Toolkit34
4.2.1NVCC编译器34
4.2.2cuobjdump35
4.3CUDA环境安装36
4.3.1Windows 7安装CUDA 4.236
4.3.2Linux下安装CUDA38
第5章CUDA C编程41
5.1CUDA编程模型41
5.2CUDA编程七步曲42
5.3驱动API与运行时API42
5.4CUDA运行时函数43
5.4.1设备管理函数43
5.4.2存储管理函数45
5.4.3数据传输函数48
5.4.4线程管理函数51
5.4.5流管理函数52
5.4.6事件管理函数52
5.4.7纹理管理函数53
5.4.8执行控制函数55
5.4.9错误处理函数55
5.4.10图形学互操作函数57
5.4.11OpenGL互操作函数58
5.4.12Direct3D互操作函数59
5.5CUDA C语言扩展60
5.6gridblockthread三维模型61
第二篇入门篇
第6章向量加法67
6.1向量加法及其串行代码67
6.2单block单thread向量加68
6.3单block多thread向量加68
6.4多block多thread向量加69
6.5CUBLAS库向量加法70
6.6实验结果分析与结论71
6.6.1本书实验平台71
6.6.2实验结果71
6.6.3结论71
6.7知识点总结72
6.8扩展练习75
第7章归约: 向量内积76
7.1向量内积及其串行代码76
7.2单block分散归约向量内积77
7.3单block低线程归约向量内积78
7.4多block向量内积(CPU二次归约)79
7.5多block向量内积(GPU二次归约)81
7.6基于原子操作的多block向量内积81

相关文章推荐:

图文精选:

Copyright©2012-2030小蚂蚁信息网版权所有 站长QQ:1614558876


郑重声明:本网站资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有,如有不愿意被转载的情况,请通知我们QQ1614558876删除已转载的信息。

Top