绿色排版工具|热门专题|网站地图|移动官网
您的当前位置:网站首页 > 电子书 > 计算机类 > 正文

深度学习:Caffe之经典模型详解与实战 完整版pdf[38MB]

来源:[db:来源] 编辑:脚本之家 时间:2019-07-29 14:47:11 阅读:

《深度学习——Caffe之经典模型详解与实战》首先介绍了深度学习相关的理论和主流的深度学习框架,然后从Caffe深度学习框架为切入点,介绍了Caffe的安装、配置、编译和接口等运行环境,剖析Caffe网络模型的构成要素和常用的层类型和Solver方法。通过LeNet网络模型的Mnist手写实例介绍其样本训练和识别过程,进一步详细解读了AlexNet、VGGNet、GoogLeNet、Siamese和SqueezeNet网络模型,并给出了这些模型基于Caffe的训练实战方法。然后,《深度学习——Caffe之经典模型详解与实战》解读了利用深度学习进行目标定位的经典网络模型:FCN、R-CNN、Fast-RCNN、Faster-RCNN和SSD,并进行目标定位Caffe实战。《深度学习——Caffe之经典模型详解与实战》的最后,从著名的Kaggle网站引入了两个经典的实战项目,并进行了有针对性的原始数据分析、网络模型设计和Caffe训练策略实践,以求带给读者从问题提出到利用Caffe求解的完整工程经历,从而使读者能尽快掌握Caffe框架的使用技巧和实战经验。

针对Caffe和深度学习领域的初学者,《深度学习——Caffe之经典模型详解与实战》是一本不可多得的参考资料。《深度学习——Caffe之经典模型详解与实战》的内容既有易懂的理论背景,又有丰富的应用实践,是深度学习初学者的指导手册,也可作为深度学习相关领域工程师和爱好者的参考用书。

目录
第1章 绪论 1
1.1 引言 1
1.2 人工智能的发展历程 2
1.3 机器学习及相关技术 4
1.3.1 学习形式分类 4
1.3.2 学习方法分类 5
1.3.3 机器学习的相关技术 7
1.4 国内外研究现状 8
1.4.1 国外研究现状 8
1.4.2 国内研究现状 9
第2章 深度学习 11
2.1 神经网络模型 11
2.1.1 人脑视觉机理 11
2.1.2 生物神经元 13
2.1.3 人工神经网络 15
2.2 BP神经网络 18
2.2.1 BP神经元 18
2.2.2 BP神经网络构成 19
2.2.3 正向传播 21
2.2.4 反向传播 21
2.3 卷积神经网络 24
2.3.1 卷积神经网络的历史 25
2.3.2 卷积神经网络的网络结构 26
2.3.3 局部感知 27
2.3.4 参数共享 28
2.3.5 多卷积核 28
2.3.6 池化(Pooling) 29
2.4 深度学习框架 30
2.4.1 Caffe 30
2.4.2 Torch 31
2.4.3 Keras 32
2.4.4 MXNet 32
2.4.5 TensorFlow 33
2.4.6 CNTK 33
2.4.7 Theano 34
第3章 Caffe简介及其安装配置 36
3.1 Caffe是什么 36
3.1.1 Caffe的特点 38
3.1.2 Caffe的架构 38
3.2 Caffe的安装环境 39
3.2.1 Caffe的硬件环境 39
3.2.2 Caffe的软件环境 43
3.2.3 Caffe的依赖库 44
3.2.4 Caffe开发环境的安装 46
3.3 Caffe接口 52

相关文章推荐:

图文精选:

Copyright©2012-2019 小蚂蚁信息网版权所有 粤ICP备14061018号-1


郑重声明:本网站资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有,如有不愿意被转载的情况,请通知我们删除已转载的信息。

Top