绿色排版工具|热门专题|网站地图|移动官网
您的当前位置:网站首页 > 电子书 > 计算机类 > 正文

R语言与数据挖掘最佳实践和经典案例 带书签目录 pdf版

来源:[db:来源] 编辑:脚本之家 时间:2019-07-29 14:47:15 阅读:

数据挖掘技术已经广泛用于政府机关、银行、保险、零售、电信、医药和研究领域。最近,越来越多的数据挖掘工作开始使用R工具来完成,R是一个用于统计计算和制图的免费软件。在最近的调查中,R已经被评为数据挖掘领域最流行的工具。本书介绍将R语言用于数据挖掘应用(从学术研究到工业应用),从大量数据中提取出有用知识的各种实用方法。

本书主要特色

  1. 介绍了R用于数据挖掘应用的案例,涵盖了最常用的数据挖掘技术。
  2. 提供了代码示例和数据,以便读者可以轻松地学习数据挖掘技术。
  3. 现实应用中的特色案例研究有助于读者将学到的技术应用到自己的工作和研究中。

目录
第1章 简介1
1.1 数据挖掘1
1.2 R1
1.3 数据集2
1.3.1 iris数据集2
1.3.2 bodyfat数据集3
第2章 数据的导入与导出4
2.1 R数据的保存与加载4
2.2 .CSV文件的导入与导出4
2.3 从SAS中导入数据5
2.4 通过ODBC导入与导出数据6
2.4.1 从数据库中读取数据7
2.4.2 从Excel文件中导入与导出数据7
第3章 数据探索8
3.1 查看数据8
3.2 探索单个变量10
3.3 探索多个变量12
3.4 更多探索15
3.5 将图表保存到文件中19
第4章 决策树与随机森林21
4.1 使用party包构建决策树21
4.2 使用rpart包构建决策树24
4.3 随机森林29
第5章 回归分析33
5.1 线性回归33
5.2 逻辑回归38
5.3 广义线性回归38
5.4 非线性回归40
第6章 聚类41
6.1 k-means聚类41
6.2 k-medoids聚类43
6.3 层次聚类45
6.4 基于密度的聚类46
第7章 离群点检测50
7.1 单变量的离群点检测50
7.2 局部离群点因子检测53
7.3 用聚类方法进行离群点检测56
7.4 时间序列数据的离群点检测58
7.5 讨论59
第8章 时间序列分析与挖掘60
8.1 R中的时间序列数据60
8.2 时间序列分解60
8.3 时间序列预测62
8.4 时间序列聚类63
8.4.1 动态时间规整63
8.4.2 合成控制图的时间序列数据64
8.4.3 基于欧氏距离的层次聚类65
8.4.4 基于DTW距离的层次聚类66
8.5 时间序列分类67
8.5.1 基于原始数据的分类67
8.5.2 基于特征提取的分类68
8.5.3 k-NN分类69
8.6 讨论70
8.7 延伸阅读70
第9章 关联规则71
9.1 关联规则的基本概念71
9.2 Titanic数据集71
9.3 关联规则挖掘73
9.4 消除冗余78
9.5 解释规则79
9.6 关联规则的可视化80
9.7 讨论与延伸阅读82
第10章 文本挖掘84

图文精选:

Copyright©2012-2019 小蚂蚁信息网版权所有 粤ICP备14061018号-1


郑重声明:本网站资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有,如有不愿意被转载的情况,请通知我们删除已转载的信息。

Top