绿色排版工具|热门专题|网站地图|移动官网
您的当前位置:网站首页 > 电子书 > 计算机类 > 正文

机器学习实践指南:案例应用解析(第二版)完整版PDF[82MB]

来源:[db:来源] 编辑:脚本之家 时间:2019-07-29 14:47:56 阅读:

《机器学习实践指南》第2版比第1版增加了更多的案例和算法解析,全书详细介绍了机器学习发展及应用前景、科学计算平台、Python计算平台应用、R语言计算平台应用、生产环境基础、统计分析基础、描述性分析案例、假设检验与回归模型案例、神经网络、统计算法、欧氏距离与余弦相似度、SVM、回归算法、PCA降维、关联规则、聚类与分类算法、数据拟合案例、图像算法案例、机器视觉案例、文本分类案例等机器学习实践与应用。

目录
推荐序
前言
第一部分 准备篇
第1章 机器学习发展及应用前景 2
1.1 机器学习概述 2
1.1.1 什么是机器学习 3
1.1.2 机器学习的发展 3
1.1.3 机器学习的未来 4
1.2 机器学习应用前景 5
1.2.1 数据分析与挖掘 5
1.2.2 模式识别 6
1.2.3 更广阔的领域 6
1.3 小结 7
第2章 科学计算平台 8
2.1 科学计算软件平台概述 9
2.1.1 常用的科学计算软件 9
2.1.2 本书使用的工程计算平台 10
2.2 计算平台的配置 11
2.2.1 Numpy等Python科学计算包的安装与配置 11
2.2.2 OpenCV 安装与配置 14
2.2.3 mlpy 安装与配置 14
2.2.4 BeautifulSoup安装与配置 15
2.2.5 Neurolab安装与配置 15
2.2.6 R安装与配置 16
2.3 小结 16
第二部分 基础篇
第3章 计算平台应用实例 18
3.1 Python计算平台简介及应用实例 18
3.1.1 Python语言基础 18
3.1.2 Numpy库 29
3.1.3 pylab、matplotlib绘图 36
3.1.4 图像基础 38
3.1.5 图像融合与图像镜像 46
3.1.6 图像灰度化与图像加噪 48
3.1.7 声音基础 51
3.1.8 声音音量调节 53
3.1.9 图像信息隐藏 58
3.1.10 声音信息隐藏 62
3.2 R语言基础 68
3.2.1 基本操作 69
3.2.2 向量 71
3.2.3 对象集属性 77
3.2.4 因子和有序因子 78
3.2.5 循环语句 79
3.2.6 条件语句 79
3.3 R语言科学计算 80
3.3.1 分类(组)统计 80
3.3.2 数组与矩阵基础 81
3.3.3 数组运算 84
3.3.4 矩阵运算 85
3.4 R语言计算实例 93
3.4.1 学生数据集读写 93
3.4.2 最小二乘法拟合 94
3.4.3 交叉因子频率分析 96
3.4.4 向量模长计算 97
3.4.5 欧氏距离计算 98
3.5 小结 99
思考题 99
第4章 生产环境基础 100
4.1 Windows Server 2008基础 100
4.1.1 Windows Server 2008 R2概述 101
4.1.2 Windows PowerShell 102
4.2 Linux基础 103
4.2.1 Linux命令 104
4.2.2 Shell基础 114
4.3 Vim编辑器 122
4.3.1 Vim编辑器概述 122
4.3.2 Vim常用命令 123
4.4 虚拟化平台 124
4.4.1 Citrix Xenserver概述 125
4.4.2 Citrix Xenserver部署 126
4.4.3 基于XenCenter的虚拟服务器管理 126

相关文章推荐:

图文精选:

Copyright©2012-2019 小蚂蚁信息网版权所有 粤ICP备14061018号-1


郑重声明:本网站资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有,如有不愿意被转载的情况,请通知我们删除已转载的信息。

Top